Kliknij tutaj, 👆 aby dostać odpowiedź na pytanie ️ Sprowadź podane ułamki do jak najmniejszego wspólnego mianownika. a) 5/12 i 7/15 b) 3/14 i 5/25 c) 13/45 i 1… Sprowadź do wspólnego mianownika poniższe ułamki: a) \(\dfrac{3}{5}\) oraz \(1\dfrac{2}{7}\) b) \(3\dfrac{5}{9}\) oraz \(7\dfrac{5}{6}\) c) \(2\dfrac{2}{3}\) oraz \(4\dfrac{4}{15}\) d) \(5\dfrac{6}{13}\) oraz \(9\dfrac{1}{2}\) e) \(11\dfrac{5}{12}\) oraz \(\dfrac{3}{5}\) Rozwiązanie Aby sprowadzić ułamek z częścią całkowitą do wspólnego mianownika, postępujemy tak, jakby tej liczby całkowitej nie było, po prostu przepisujemy ją, a ułamek rozszerzamy: a) \(\dfrac{3}{5}\) oraz \(1\dfrac{2}{7}\)Wspólnym mianownikiem będzie \(5\cdot 7=35\): \( \dfrac{3}{5}_{\: / \: \cdot 7}=\dfrac{3\cdot 7}{5\cdot 7}=\dfrac{21}{35}\) \(1\dfrac{2}{7}_{\: / \: \cdot 5}=1\dfrac{2\cdot 5}{7\cdot 5}=1\dfrac{10}{35}\) b) \(3\dfrac{5}{9}\) oraz \(7\dfrac{5}{6}\)Pierwszy mianownik to \(9=3\cdot 3\), drugi to \(6=3\cdot 2\), oznacza to, że wspólnym mianownikiem może być \(18\), czyli iloczyn niepowtarzających się liczb \(3\cdot 3\cdot 2\). \( 3\dfrac{5}{9}_{\: / \: \cdot 2}=3\dfrac{5\cdot 2}{9\cdot 2}=3\dfrac{10}{18}\) \( 7\dfrac{5}{6}_{\: / \: \cdot 3}=7\dfrac{5\cdot 3}{6\cdot 3}=7\dfrac{15}{18}\) c) \(2\dfrac{2}{3}\) oraz \(4\dfrac{4}{15}\)Wspólnym mianownikiem będzie \(15\), więc tylko pierwszy ułamek rozszerzamy: \( 2\dfrac{2}{3}_{\: / \: \cdot 5}=2\dfrac{2\cdot 5}{3\cdot 5}=2\dfrac{10}{15}\) \(4\dfrac{4}{15}\) d) \(5\dfrac{6}{13}\) oraz \(9\dfrac{1}{2}\) Wspólnym mianownikiem będzie \(13\cdot 2 = 26\) \(5\dfrac{6}{13}_{\: / \: \cdot 2}=5\dfrac{6\cdot 2}{13\cdot 2}=5\dfrac{12}{26}\) \(9\dfrac{1}{2}_{\: / \: \cdot 13}=9\dfrac{1\cdot 13}{2\cdot 13}=9\dfrac{13}{26}\) e) \(11\dfrac{5}{12}\) oraz \(\dfrac{3}{5}\)Wspólnym mianownikiem podanych wyrażeń będzie \(12\cdot 5=60\): \(11\dfrac{5}{12}_{\: / \: \cdot 5}=11\dfrac{5\cdot 5}{12\cdot 5}=11\dfrac{25}{60}\) \(\dfrac{3}{5}_{\: / \: \cdot 12}=\dfrac{3\cdot 12}{5\cdot 12}=\dfrac{36}{60}\)Zadanie 1Zadanie 3
Jak porównywać liczby? W załączonym zadaniu spotkamy się z dwoma sposobami zapisu liczb: liczba zapisana jako ułamek zwykły, czyli np. , . Żeby takie ułamki to musimy sprowadzić je do wspólnego mianownika. Liczba zapisana nad kreską ułamkową to licznik, a liczba zapisana pod kreską ułamkową to mianownik.
Naszym celem będzie sprowadzenie ułamków do wspólnego mianownika. Polega ono na rozszerzeniu ułamków (mnożeniu licznika i mianownika przez tą samą liczbę) tak, aby w mianowniku uzyskać wspólną liczbę dla wszystkich ułamków. To działanie jest niezbędne np. przy dodawaniu i odejmowaniu ułamków. Jak to zrobić? Weźmy dwa ułamki $\frac{2}{4}$ i $\frac{1}{3}$. Żeby znaleźć wspólny mianownik, to znajdujemy jego najmniejszą wspólną wielokrotność (NWW), to znaczy: Wypisujemy po kolei wielokrotności danych liczb. Dla 4 i 3 mamy: 4 $\rightarrow$ 4,8,12,16,20,24,… 3 $\rightarrow$ 3,6,9,12,15,18,… Wypisujemy te wielokrotności aż do momentu, jak pierwszy raz znajdziemy wielokrotność liczb 4 i 3. Jest to liczba 12. Zatem NWW(4,3) $=$ 12, czyli liczba 12 jest ich wspólnym mianownikiem. Rozszerzamy więc nasze ułamki tak, aby w mianowniku pojawiła się 12, to znaczy: $$\frac{2}{4} = \frac{2}{4} \cdot \color{blue}{\frac{3}{3}} \color{black}{= \frac{2\cdot3}{4\cdot3}=\frac{6}{12}}$$ $$\frac{1}{3} = \frac{1}{3} \cdot \color{blue}{\frac{4}{4}}\color{black}{ = \frac{1\cdot4}{3\cdot4}=\frac{4}{12}}$$Po tym procesie uzyskaliśmy wspólny mianownik. Jest to liczba 12. Dodawanie ułamków zwykłych Żeby wyjaśnić idee dodawania ułamków, to spójrz na powyższe przykłady. Przykład 1. Oblicz $\frac{1}{3} + \frac{1}{4}$. Najpierw zaczynamy od sprowadzenia do wspólnego mianownika. Z poprzedniej części wiemy, że wspólnym mianownikiem 3 i 4 jest liczba 12. Zatem: $$\frac{1}{3} + \frac{1}{4} = \frac{1 \cdot 4}{3 \cdot 4} + \frac{1 \cdot 3}{1 \cdot 4}= \frac{4}{12} + \frac{3}{12} = \frac{7}{12}$$ Przykład 2. Oblicz $1\frac{1}{5} + \frac{3}{5}$. Najpierw liczbę $1\frac{1}{5}$ zamieniamy na ułamek niewłaściwy, tj.: $$1\frac{1}{5} = \frac{1 \cdot 5 + 1}{5} = \frac{5+1}{5} = \frac{6}{5}$$Teraz możemy wykonać działanie:$$\frac{6}{5} + \frac{3}{5} = \frac{9}{5}$$ Przykład 3. Oblicz $2\frac{1}{4} + 2\frac{1}{6}$. Na początku zamieniamy liczby na ułamki niewłaściwe, czyli:$$2\frac{1}{4} = \frac{2 \cdot 4 + 1}{4} = \frac{8+1}{4} = \frac{9}{4}$$ $$2\frac{1}{6} = \frac{2 \cdot 6 + 1}{6} = \frac{12+1}{6} = \frac{13}{6}$$Znajdujemy NWW(4,6), tzn. wypisujemy wielokrotności liczb 4 i 6: 4 $\rightarrow$ 4,8,12,16,20,24,… 6 $\rightarrow$ 6,12,18,24,30,… Zatem NWW(4,6) $=$ 12. Wobec tego: $$\frac{9}{4} + \frac{13}{6} = \frac{9 \cdot 3}{4 \cdot 3} + \frac{13 \cdot 2}{3 \cdot 4} = \frac{27}{12} + \frac{26}{12} = \frac{27+26}{12} = \frac{53}{12} = 4\frac{5}{12}$$ Odejmowanie ułamków zwykłych Schemat odejmowania ułamków jest taki sam jak przy dodawaniu ułamków zwykłych. Przykład 4. Oblicz $\frac{3}{4} – \frac{1}{4}$. $$\frac{3}{4} – \frac{1}{4} = \frac{3-1}{4} = \frac{2}{4}$$ Przykład 5. Oblicz $\frac{1}{3} – \frac{1}{7}$. Analogicznie jak w poprzednich przykładach, na początku sprowadzamy ułamki do wspólnego mianownika, licząc NWW(3,7), które jest równe 21. Zatem: $$\frac{1}{3} – \frac{1}{7} = \frac{1 \cdot 7}{3 \cdot 7} – \frac{1 \cdot 3}{7 \cdot 3} = \frac{7}{21} – \frac{3}{21} = \frac{4}{21}$$ Przykład 6. Oblicz $2\frac{1}{3} – 1\frac{1}{9}$. Analogicznie jak w poprzednich przykładach, najpierw zamieniamy powyższe ułamki na ułamki niewłaściwe, tj.: $$2\frac{1}{3} = \frac{2 \cdot 3 + 1}{3} = \frac{6+1}{3} = \frac{7}{3}$$ $$1\frac{1}{9} = \frac{1 \cdot 9 + 1}{3} = \frac{9+1}{9} = \frac{10}{9}$$Następnie sprowadzamy do wspólnego mianownika, licząc NWW(3,9). Tym razem NWW(3,9) $=$ 9. Wobec tego: $$2\frac{1}{3} – 1\frac{1}{9} = \frac{7}{3} – \frac{10}{9} = \frac{7 \cdot 3}{3 \cdot 3} – \frac{10}{9} = \frac{21}{9} – \frac{10}{9} = \frac{21 – 10}{9} = \frac{11}{9}$$ Mnożenie ułamków zwykłych Żeby łatwiej wytłumaczyć zasadę mnożenia ułamków zwykłych, to spójrz na ten przykład: Przykład 7. Oblicz $2 \cdot \frac{2}{5}$. Korzystając z własności ułamka: $$\frac{a \cdot b}{c \cdot d} = \frac{a}{b} \cdot \frac{c}{d},\;\;\;\;gdzie: c, d \neq 0$$mamy:$$2 \cdot \frac{2}{5} = \frac{2}{1} \cdot \frac{2}{5} = \frac{2 \cdot 2}{1 \cdot 5} = \frac{4}{5}$$ Wystarczy tylko pomnożyć liczniki i mianowniki obu ułamków. Nie trzeba ich nawet sprowadzać do wspólnego mianownika. Przykład 8. Oblicz $2\frac{3}{4} \cdot 3\frac{2}{5}$. Analogiczne jak w przykładzie 7, mamy: $$2\frac{3}{4} \cdot 3\frac{2}{5} = \frac{2 \cdot 4 + 3}{4} \cdot \frac{3 \cdot 5 + 2}{5} = \frac{11}{4} \cdot \frac{17}{5} = \frac{11 \cdot 17}{4 \cdot 5} = \frac{187}{20} = 9\frac{7}{20}$$ Dzielenie ułamków zwykłych Żeby podzielić dwa ułamki zwykłe, to pierwszy ułamek mnożymy przez odwrotność drugiego ułamka. Przykład 9. Oblicz $\frac{1}{2} \div \frac{2}{3}$. Pierwszy ułamek pozostaje bez zmian, drugi ułamek „odwracamy”, to znaczy: zamieniamy miejscami licznik z mianownikiem, czyli: Teraz możemy obie liczby pomnożyć. Zatem:$$\frac{1}{2} \div \frac{2}{3} = \frac{1}{2} \cdot \frac{3}{2} = \frac{1 \cdot 3}{2 \cdot 2} = \frac{3}{4}$$ Przykład 10. Oblicz $3 \div \frac{1}{2}$. Podobnie jak w poprzednim przykładzie, liczbę 3 zostawiamy. Odwrotnością ułamka $\frac{1}{2}$ jest liczba $\frac{2}{1}$ czyli 2. Zatem: $$3 \div \frac{1}{2} = 3 \cdot \frac{2}{1} = \frac{3}{1} \cdot \frac{2}{1} = \frac{3 \cdot 2}{1 \cdot 1} = \frac{6}{1} = 6$$ Przykład 11. Oblicz $2\frac{2}{3} \div 3\frac{1}{4}$. Wcześniej przy dzieleniu ułamków zamienialiśmy ułamki mieszane na ułamki niewłaściwe, tzn.:$$2\frac{2}{3} = \frac{2 \cdot 3 + 2}{3} = \frac{6+2}{3} = \frac{8}{3}$$ $$3\frac{1}{4} = \frac{3 \cdot 4 + 1}{4} = \frac{12+1}{4} = \frac{13}{4}$$Liczbę $\frac{8}{3}$ zostawiamy bez zmian, natomiast liczba $\frac{13}{4}$ jest w postaci $\frac{4}{13}$. Zatem: $$2\frac{2}{3} \div 3\frac{1}{4} = \frac{8}{3} \div \frac{13}{4} = \frac{8}{3} \cdot \frac{4}{13} = \frac{8 \cdot 4}{3 \cdot 13} = \frac{32}{39}$$
Kliknij tutaj, 👆 aby dostać odpowiedź na pytanie ️ czy mógłby mi ktoś wytłumaczyć sprowadzenie do wspólnego mianownika? Dashei88 Dashei88 24.05.2015

No niestety ani jedno ani drugie nie jest zgodne z moimi wynikami. Oto treść całego zadania: Wykaż, że dla dowolnych liczb naturalnych n, k gdzie k Aby odjąć od siebie ułamki dziesiętne oraz zwykłe, tak jak w dodawaniu należy je sprowadzić do wspólnego mianownika, po czym odjąć od siebie liczniki, a mianownik przepisać. Podczas dodawania ułamków dziesiętnych najprościej jest zamienić je na ułamek zwykły i dopiero odjąć od siebie. Przykłady: Sprowadzanie ułamków do wspólnego mianownikaSprowadzanie ułamków do wspólnego mianownika polega na takim rozszerzeniu dwóch lub więcej ułamków, aby mianowniki tych ułamków były jednakowe. Sprowadzenie kilku ułamków do wspólnego mianownika niezbędne gdy chcemy te ułamki dodać lub odjąć od siebie. Aby sprowadzić ułamki do wspólnego mianownika, należy znaleźć taka liczbę, która jest wielokrotnością mianowników tych ułamków. Najlepszym rozwiązaniem jest, aby wielokrotność ta była jak najmniejsza, tzw najmniejsza wspólna wielokrotność. Dla przykładu sprowadźmy ułamki $\frac{1}{3}$ i $\frac{1}{4}$ do wspólnego mianownika. W pierwszej kolejności należy znaleźć najmniejszą wspólną wielokrotność obu mianowników, która w tym przypadku wynosi $12$. Następnie rozszerzyć ułamki, tak aby miały mianowniki równe $12$. $\frac{1}{3}=\frac{1\cdot 4}{3\cdot 4}=\frac{4}{12}$ $\frac{1}{4}=\frac{1\cdot 3}{4\cdot 3}=\frac{3}{12}$ Tak więc, ułamki $\frac{1}{3}$ i $\frac{1}{4}$ sprowadzone do wspólnego mianownika mają postać $\frac{4}{12}$ i $\frac{3}{12}$. Domi9265. musisz znaleźć taką liczbę która dzieli się przez oba mianowniki. jeżeli np. masz mianownik 3 i 2 to wspólny mianownik to 6 albo jeżeli masz 8 i 4 to wspólnym mianownikiem będzie 16. a liczniki musisz pomnożyć o tyle samo o ile pomnożyłaś mianownik. rozumiesz już? ;) np. 5/6- 3/4 to rozszerzasz i masz10/12- 9/12 = 1/12. Cześć. Dzisiaj opiszę jak sprowadzić ułamek do wspólnego mianownika. Postaram się wytłumaczyć to jak najprościej się da. Dodam też kilka przykładów. Przykłady sprowadzania ułamka do wspólnego mianownika Weźmy taki ułamek: 1/6 i 3/7 Najpierw mnożymy mianowniki przez siebie. 6*7 = 42. Otrzymaliśmy liczbę 42 która jest naszym wspólnym mianownikiem. Brakuje nam jeszcze licznika. 1/6 = BRAK/42 3/7 = BRAK/42 Aby uzyskać licznik musimy rozszerzyć (pomnożyć) liczniki tak aby zgadzały się one z mianownikiem. Czyli mnożymy na odwrót mianownik z licznikiem. 1*7 = 7 3*6 = 18 1/6 * 7/7 = 7/42 3/7 * 6/6 = 18/42 Bardzo łatwo wpaść w pułapkę, dlatego musimy ostrożnie podejść do tego przykładu. 5 metrów i 8 centymetrów to 508 c m, czyli 508 100 m. Zapisując to w postaci liczby mieszanej otrzymamy 5 8 100. Rozpiska tego przykładu byłaby następująca: 508 100 m = 500 100 m + 8 100 m = 5 m + 8 100 m = 5 8 100 m.

Ten materiał posiada napisy w języku ukraińskim Playlista Dodawanie ułamków zwykłych o różnych mianownikach 11:01 Odejmowanie ułamków o różnych mianownikach 05:30 Dodawanie liczb mieszanych o różnych mianownikach w części ułamkowej 09:12 Odejmowanie liczb mieszanych o różnych mianownikach w części ułamkowej 06:02 Porównywanie różnicowe ułamków zwykłych 05:31 Ten materiał posiada napisy w języku ukraińskim Z tego filmu dowiesz się: co zrobić, gdy musisz odjąć ułamki o różnych mianownikach, jak znaleźć wspólny mianownik dla dwóch ułamków, jakie są zasady odejmowania ułamków o różnych mianownikach. Podstawa programowa Autorzy i materiały Wiedza niezbędna do zrozumienia tematu Aby w pełni zrozumieć materiał zawarty w tej playliście, upewnij się, że masz opanowane poniższe zagadnienia. Udostępnianie w zewnętrznych narzędziach Korzystając z poniższych funkcjonalności możesz dodać ten zasób do swoich narzędzi. Transkrypcja Kliknij na zdanie, aby przewinąć wideo do tego miejsca. Odejmowanie ułamków o różnych mianownikach rządzi się tymi samymi prawami, co dodawanie ułamków o różnych mianownikach. Za chwilę się o tym przekonasz. Widzisz pizzę, która przed zjedzeniem jednego kawałka była podzielona na 8 jednakowych części. Skoro zjedzono jeden kawałek, to zostało 7 kawałków. Jaka to część pizzy? Siedem ósmych. Wyobraź sobie teraz, że połowę pizzy chcesz zabrać do domu. Połowa pizzy to jedna druga. Aby obliczyć, jaka część pizzy zostanie do zjedzenia, wystarczy od ułamka 7/8 odjąć ułamek 1/2. Zwróć jednak uwagę, że oba ułamki mają różne mianowniki. Potrafisz odejmować już ułamki o jednakowych mianownikach. Co więc możemy zrobić? Możemy zapisać ułamek 1/2 w postaci ułamka o mianowniku 8. Popatrz na tę pizzę. Ta linia dzieli ją na dwie połowy. Połowa z ośmiu kawałków to 4 części. Jedna druga to inaczej cztery ósme. Aby rozszerzyć ułamek 1/2 do ułamka 4/8 należy licznik i mianownik pomnożyć przez 4. Jeden razy cztery to cztery. Dwa razy cztery to osiem. W tym odejmowaniu ułamek 1/2 możemy zastąpić ułamkiem 4/8. Co otrzymamy? 7/8 odjąć 4/8. Gdy odejmujemy dwa ułamki o takich samych mianownikach, to odejmujemy od siebie liczniki, a mianownik przepisujemy bez zmian. Siedem odjąć cztery to trzy. Otrzymamy trzy ósme. Do zjedzenia zostanie 3/8 pizzy. Spójrz w teraz na taki przykład. Tutaj mamy dwie trzecie odjąć jedna czwarta. Te ułamki również mają różne mianowniki. Aby je od siebie odjąć, należy sprowadzić je do wspólnego mianownika. Taka liczba będzie dzieliła się zarówno przez 3 jak i przez 4. Wypiszmy najpierw wielokrotności liczby 3. Są to liczby: 0, 3, 6, 9, 12 i tak dalej... Tyle nam wystarczy. Wypiszmy teraz wielokrotności liczby 4. Są to liczby 0, 4, 8 i 12. Oczywiście liczba 4 ma więcej wielokrotności, ale tyle też nam wystarczy. Widzimy, że wspólną wielokrotnością obu liczb jest liczba 12. Mam teraz dla ciebie zadanie: zatrzymaj lekcję i spróbuj samodzielnie rozszerzyć oba ułamki do ułamka o mianowniku 12. Aby rozszerzyć ułamek 2/3 do ułamka o mianowniku 12, wystarczy licznik i mianownik pomnożyć przez 4. Otrzymamy 8/12. Aby rozszerzyć ułamek 1/4 do ułamka o mianowniku 12, wystarczy licznik i mianownik pomnożyć przez 3. Otrzymamy 3/12. Odejmijmy od siebie te ułamki. Co otrzymamy? Osiem dwunastych odjąć trzy dwunaste to 5/12. Znowu mam zadanie dla ciebie. Zatrzymaj lekcję i spróbuj samodzielnie wykonać to odejmowanie. Znowu mamy tutaj ułamki o różnych mianownikach. Aby wykonać to odejmowanie musimy sprowadzić te dwa ułamki do wspólnego mianownika. Spróbujmy to zrobić bez wypisywania wielokrotności obu mianowników. Która liczba jest większa? 12. Liczba 12 nie dzieli się przez 8, czyli tego ułamka nie możemy zapisać w postaci ułamka o mianowniku 12. Jaka jest kolejna wielokrotność liczby 12? Dwadzieścia cztery. Czy 24 dzieli się przez 8? Tak. Wspólnym mianownikiem obu ułamków będzie więc liczba 24. Aby rozszerzyć ułamek 7/8 do ułamka o mianowniku 24, należy licznik i mianownik pomnożyć przez 3. Otrzymamy 21/24. Aby rozszerzyć ułamek 1/12 do ułamka o mianowniku 24, należy licznik i mianownik pomnożyć przez 2. Otrzymamy 2/24. Teraz możemy odjąć od siebie te dwa ułamki. Skoro mają takie same mianowniki, to odejmujemy od siebie liczniki, a mianownik przepisujemy bez zmian. 21 odjąć 2 to 19. Otrzymamy 19/24. Pamiętaj, aby na końcu sprawdzić, czy wynik da się zapisać w postaci liczby mieszanej, albo czy da się go skrócić. Ułamka 19/24 nie da się zapisać w postaci liczby mieszanej, ani go skrócić. To jest nasz wynik. Aby odjąć ułamki o różnych mianownikach, trzeba najpierw sprowadzić je do wspólnego mianownika, a następnie odjąć liczniki, a mianownik przepisać bez zmian. Pamiętaj, aby wynik zapisać w postaci ułamka nieskracalnego lub liczby mieszanej. Dzięki tej playliście nauczysz się dodawania i odejmowania ułamków o różnych mianownikach. Wszystkie playlisty znajdziesz na naszej stronie internetowej, Ćwiczenia Interaktywne ćwiczenia związane z tą wideolekcją. Materiały dodatkowe Inne zasoby do wykorzystania podczas zajęć z tego tematu. Lista wszystkich autorów Lektor: Krzysztof Chojecki Konsultacja: Małgorzata Rabenda Grafika podsumowania: Valeriia Malyk Materiały: Valeriia Malyk, Krzysztof Chojecki, Joanna Zalewska Kontrola jakości: Małgorzata Załoga Produkcja

iz32e.
  • tp2gaj12nz.pages.dev/87
  • tp2gaj12nz.pages.dev/390
  • tp2gaj12nz.pages.dev/86
  • tp2gaj12nz.pages.dev/61
  • tp2gaj12nz.pages.dev/199
  • tp2gaj12nz.pages.dev/195
  • tp2gaj12nz.pages.dev/25
  • tp2gaj12nz.pages.dev/75
  • tp2gaj12nz.pages.dev/33
  • jak sprowadzić do wspólnego mianownika